
22ЗВ’ЯЗОК, № 1, 2023

Проблеми розвитку та вдосконалення
єдиної національної системи зв’язку СЛОВО НАУКОВЦЯ

ISSN 2412-9070

УДК 004.23:004.272.44 DOI: 10.31673/2412-9070.2023.012126
V. O. KuzmInyKh, PhD, assoc. professor;
S. I. OtrOKh, D.S. assoc. professor;
B. Xu, postgraduate;
r. A. tArAnenKO, senior engineer;
L. I. KuBLII, PhD, assoc. professor,
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv

eVent-OrienteD arChiteCture in the SyStem FOr PrOCeSSinG
larGe Data StreamS

Introduction
With the rapid development of the information

society, the task of finding ways to increase the effi-
ciency of analytical activities in corporate informa-
tion and analytical systems is becoming extremely
urgent. Analysts have to operate information re-
sources that are unprecedented in their size, com-
plexity, dynamism and growth rates, and this forces
information systems developers to look for ways to
improve data processing processes and technologies.

The goal of analytical activity is to provide infor-
mation needs of the organization and support deci-
sion-making. Analytical activity in various fields
involves working with information, its in-depth un-
derstanding, decision-making regarding analysis in
one or another situation, thematic processing of in-
formation and its visualization in analytical reports,
their verification, obtaining management decisions
based on new knowledge].

The availability of modern means of data storage,
extraction and visualization by itself does not solve
the main tasks of the corporate information and ana-

the article discusses approaches to the implementation of the microservice architecture of the system for processing
large data flows when collecting information on the main event-oriented approach in the organization of managing the
sequence of use of individual microservices, which provide access to information sources and the extraction of relevant
data corresponding to the user's request. this is important when processing large data flows from heterogeneous infor-
mation sources, especially when the task is to minimize the total time of collection and processing of large data flows.
this, in turn, poses the task of minimizing the number of requests to information sources to obtain a sufficient number
of units relevant to the data search request. the creation of effective systems for processing big data requires constant
development of approaches to the architecture of building software applications. an approach to the construction of the
software system architecture is proposed, which makes it possible to manage the selection of microservices adaptively,
in accordance with the events that occur during information collection, and thus form the choice of information sources
based on the evaluation of the effectiveness of obtaining relevant information from them. the event-oriented microservice
architecture makes it possible to adapt the operation of the software system to the loads on individual microservices and
to increase the efficiency of their work by correcting calls to information sources based on the analysis of relevant events
that occur during the collection and initial processing of the received data. Based on the analysis of the current state of
information collection, new instances of containers can be created to extract information from the most effective sources
and, thus, improve the efficiency of the system as a whole. the use of event-oriented microservice architecture can be
especially effective in the development of various information and analytical systems that have the need, according to user
requests, to refer to various sources of information based on their relevance, and to process large data streams when
collecting information.

Keywords: microservices; adaptation; event-driven architecture.

lytical system. This is impossible without a powerful
analytical component, which allows you to extract
from the gigantic amount of data coming from vari-
ous sources, the information necessary and suffi-
cient to successfully respond to incoming calls.

The description of the analytical component must
be effective. This means that the costs of conducting
it should be the lowest with optimal depth of analy-
sis and its complexity. Therefore, the use of mod-
ern methods and tools to increase the efficiency of
analytical activities is extremely important. For the
design of analytical activities, it is very important
to use business process analysis methods, software
modeling methods, network planning and manage-
ment methods, which must be implemented using
the latest highly effective types of software archi-
tecture [1; 2].

The development of the architecture of informa-
tion and analytical systems is characterized by the
need to find and implement solutions that ensure the
integration of many functions and services. Classi-
cal monolithic solutions very often do not meet the

© V. O. Kuzminykh, S. I. Otrokh, B. Xu, R. A. Taranenko, L. I. Kublii, 2023

23 ЗВ’ЯЗОК, № 1, 2023

СЛОВО НАУКОВЦЯ
Проблеми розвитку та вдосконалення

єдиної національної системи зв’язку

ISSN 2412-9070

requirements of the necessary flexibility of the solu-
tion, speed of obtaining results, efficiency and their
quality. Most of the classic architectural solutions
were proposed already decades earlier, but the pos-
sibilities of development and implementation of new
architectural solutions appeared with the develop-
ment of technical capabilities and their distribution,
which made them easily accessible to developers.

Analysis of existing solutions
Today, the most famous and widespread architec-

tural solutions for the development of software tools
for information and analytical systems are:

• layered architecture (Layered Architecture,
LA);

• multi-level architecture (Tiered Architecture,
TA);

• service-oriented architecture (Service Oriented
Architecture, SOA);

• micro-service architecture (Microservice Archi-
tecture, MA);

• event-driven architecture (Event-driven archi-
tecture, EDA).

Each of them has its own advantages and disad-
vantages, which are due to the peculiarities of their
implementation. There has been a change in the
binding of solution construction from an orientation
on taking into account technical capabilities to an
orientation on the requirements of the solution, es-
pecially in micro-service architecture. Today, there
is a significant trend towards the development of
software tools that will focus on building intelligent
systems of multifunctional systems.

multi-layered architecture works on the princi-
ple of division of responsibility. It has three layers:
presentation layer (Presentation Layer), business
logic layer (Business Logic Layer), data transfer lay-
er (Data Link Layer) [1].

The advantages of a layered architecture is that
it is a fairly simple architecture, thanks to the divi-
sion of responsibilities. At the same time, it allows to
implement the protection of layers from each other
and to increase controllability due to the reduction
of connectivity.

Disadvantages of multilayer architecture include
the fact that it does not allow for serious scaling, the
monolithic structure of software tools and the man-
datory passage of data through each layer.

A tiered architecture divides responsibility be-
tween the data provider and the consumer. The di-
vision of functions is implemented in a complex of
software tools at different levels according to the
«client-server» principle. The Request Response [2]
template is used to communicate with the layers. The
architecture offers both horizontal and vertical scal-
ing. Architecture can have one, two, three or more
level solutions. Starting with three-level solutions,

the architecture is combined with service-oriented,
which allows you to create complex models.

Service-oriented architecture uses several models
that are different in structure and purpose, connect-
ing components and programs with well-defined ser-
vices. The architecture has the following main com-
ponents:

• services (Services);
• service bus (Service Bus);
• service repository (Service Repository catalog of

services);
• SOA security (SOA Security);
• SOA governance (SOA Governance).
Service-oriented architecture considers three

types of main participants — service provider, ser-
vice consumer, and service registry [3]. The basis of
the service-oriented architecture is the enterprise
service bus (ESB), which processes requests accord-
ing to a standard protocol and data format.

Service architecture distinguishes two main types
of services: atomic services (Atomic services) — those
that are not subject to decomposition, and composite
services (Composite services) — those that combine
atomic services to build complex functionality. The
SOA architecture is built on several models [2]:

• message-oriented model (Message Oriented Mod-
el, MOM);

• service-oriented model (Service Oriented Model,
SOM);

• resource-oriented model (Resource Oriented
Model, ROM);

• policy model (Policy Model, PM);
• management model (Management Model, MM).
micro-service architecture is a type and develop-

ment of service-oriented architecture, which is built
on separate components — micro-services.

The micro-service architecture consists of the fol-
lowing components:

• services (Services);
• service bus (Service Bus);
• external configuration (External configura-

tion);
• API gateway (API Gateway);
• containers (Containers).
Among the main properties of micro-service ar-

chitecture can be identified: division into service
components, orientation to business needs, orienta-
tion to the product rather than projects, decentral-
ized management and data management, infrastruc-
ture automation, protection against failures. The
breakdown of microservices is based on the approach
of subject-oriented design DDD (Domain-driven de-
sign).

Containers in the micro-service architecture are
created on the basis of templates, which represent
an image formed by different levels. To coordinate
transactions in the micro-service architecture, two

24ЗВ’ЯЗОК, № 1, 2023

Проблеми розвитку та вдосконалення
єдиної національної системи зв’язку СЛОВО НАУКОВЦЯ

ISSN 2412-9070

approaches are used: choreography and orchestra-
tion. Choreography is a decentralized coordination
where a microservice chooses whether or not to act
based on events or messages from another microser-
vice. Orchestration is centralized coordination when
an action to be performed by a microservice is com-
municated to it by a separate component called an
orchestrator.

The advantages of micro-service architecture are
weak coupling and high isolation, modularity, low
failure rate, high flexibility and scalability, easy
modification of containers, acceleration of itera-
tions, improved error handling, and more efficient
data processing than in multilayer architecture.

Disadvantages of micro-service architecture are
increased risks of exchange failures between ser-
vices, increased complexity of coordination and
manageability of services, the impact of network
latency problems and other problems of distributed
architecture, the need for comprehensive testing of
the architecture's performance, greater time spent
on implementation. Orientation to business needs
has resulted in the practice of actively applying the
construction of software tools in accordance with
microservice architecture, especially in information
and analytical systems and systems for searching
and processing big data.

event-oriented architecture is a type of software
architecture that takes into account the events that
occur and are analyzed during the operation of the
software system, and the reaction to them. An event
is interpreted as an action that initiates some mes-
sage or a change in the application, or an event is a
significant change in the state of the software sys-
tem.

In practice, event-oriented architecture is also
considered as a logical development of an adaptive
superstructure over micro-service architecture.
In event-oriented architecture, the focus shifts to
events and how they are handled by the system archi-
tecture. The logic of the event-oriented architecture
is built according to two types of topology — Broker
and Mediator, named by programs as mediators that
connect the generator and consumer of events. The
main elements of the topology:

The main advantages of event-oriented architec-
ture are obtaining results in real-time; shorter de-
lays in data storage and transmission; greater band-
width; simple scalability; high resistance to failures.

The main disadvantages of the event-oriented ar-
chitecture are rather complex development and ini-
tial configuration of the software system.

Choice of implementation
Modern event-oriented micro-service architectur-

al solutions in terms of efficiency still do not have
universal solutions and in complex tasks require the

involvement of a lot of additional, related know-
ledge, which is especially relevant in the construction
of information and analytical systems. The develop-
ment of this direction has a significant perspective.

New architectural solutions based on event-ori-
ented micro-service software architecture have
brought the analytical, management and control ca-
pabilities of organizations with a complex distribut-
ed structure to a qualitatively new level, giving the
opportunity to build a system of search, analysis and
information environment that is maximally adapted
to their structure and processes. The task of develo-
ping ideologies and approaches for the most effective
use of micro-service architecture in solving complex
information and analytical problems remains an ur-
gent problem, which reflects the constant increase in
the amount of information that must be processed to
solve user requests [4].

Event-driven software architecture is a popular
approach to creating a distributed asynchronous ar-
chitecture used to build complex, scalable applica-
tions. This approach is flexibly adaptable to changes
in the conditions of use of the software system and
can be used both for small programs and for large,
complex software systems. An event-driven ar-
chitecture consists of highly decoupled, dedicated
event-handling components that asynchronously
receive information about occurring events and pro-
cess that information according to current and pre-
vious events.

Event-driven microservice architectures are the
best practices for implementing today's scalable
cloud applications. This architecture is ideal for cre-
ating a platform for collecting and processing large
data streams.

Modern event-oriented micro-service architec-
tural solutions consist of two main types of topo-
logy: mediator and broker. A mediator topology is
typically used when you need to organize multiple
steps within an event through a central mediator,
while a broker mediator topology is used when you
want to combine events without using a central me-
diator. Because the architecture characteristics and
implementation strategies differ between these two
topologies, it is important to understand each one in
order to know which is best suited for a particular
situation, reflecting the direction of development of
a particular information and analytics system.

A mediator topology can be used for events with
multiple steps. The topology of the mediator consists
of four main elements:

• queues of events,
• mediator of events,
• event channels,
• event processors.
An event flow begins with a client sending an event

to a queue that transports it to the event mediator.

25 ЗВ’ЯЗОК, № 1, 2023

СЛОВО НАУКОВЦЯ
Проблеми розвитку та вдосконалення

єдиної національної системи зв’язку

ISSN 2412-9070

The mediator then sends events asynchronously to
event channels to complete each step of the process.
Event processors analyze the state of event channels
and perform certain business logic that corresponds
to the necessary event processing [5].

The broker topology is characterized by the fact
that this topology does not have a central element
as an event mediator to organize the initial event.
There are two types of components: broker and event
processor. Each event processor is responsible for
processing the event and publishing a new event to
notify others of the action taken. The broker imple-
ments such elements as message queues, message
topics, or a combination thereof. Topology is useful
when there is a relatively simple flow of processing
homogeneous events [6].

The analysis of the possibilities of these two ap-
proaches to the organization of actions in the tasks
of collecting and processing big data allows us to
talk about the clear advantages of the second as more
flexible and such that it gives the opportunity to
build adaptive architectural solutions in the imple-
mentation of software systems. In this way, it is pos-
sible to build software analytical systems that have a
flexible, event-adaptive scenario for collecting and
processing big data.

The topology of the event-oriented micro-service
broker in the information and analytical system
makes it possible to:

• create events that cause requests to individual
sources of information;

• form events in accordance with the primary
scenario of information collection, which deter-
mines the sequence of selection of information sour-
ces;

• adjust the information collection scenario based
on the analysis of the amount of relevant informa-
tion received;

• form new events that determine the further
choice of information collection sources;

• save changes in information collection scenarios
for further use if necessary.

An event in this case means a structured message
of a fixed structure, which will be sent to a certain
section in the message broker, with addresses for all
services that are subscribed to update the message
queue for a certain section.

At the same time, such an architecture structure
makes it possible to obtain results in full in accor-
dance with the tasks set by the analyst. No matter
how complex and large the analyst's request is, and
therefore the overall load on the system, in the end
the analyst (user) will receive the correct data that
was specified in the request.

The main advantages of the presented adaptive
event-oriented architecture in the system for pro-
cessing large data flows are as follows [7]:

• the possibility of collecting and processing big
data in real time;

• the possibility of managing parallel data pro-
cessing;

• independence of system program operation from
the scale of the system;

• speed of response to changes in the analyst's re-
quests;

• the possibility of adapting the data collection
scenario due to the selection of sources in accordance
with the quantitative assessment of the relevance of
the information obtained during the execution of the
analyst's requests.

General architecture of the system for processing large data flows from heterogeneous sources

26ЗВ’ЯЗОК, № 1, 2023

Проблеми розвитку та вдосконалення
єдиної національної системи зв’язку СЛОВО НАУКОВЦЯ

ISSN 2412-9070

The development of systems for the collection and
processing of large data flows from heterogeneous
sources in most cases requires the determination of the
specifics of specific implementations in accordance with
the tasks that reflect both the specifics of the selected
sources for data extraction and the specifics of the re-
quirements for the quality, relevance and reliability of
the information collected from the relevant sources.

The presented event-oriented micro-service archi-
tecture of the software system (figure on p. 25) has
some features that are related to the use of a sepa-
rate service that manages the actions of the system
as a whole from the point of view of analyzing the
performance of tasks in accordance with the primary
request of the system user, as well as the selection
process information sources most relevant to the re-
quest by activating the appropriate microservices
associated with specific sources.

Based on the request of the system user (analy-
tics), corresponding requests are formed, which the
message broker receives. This triggers the activation
process of the microservices responsible for data col-
lection, according to the initial information collec-
tion scenario [8]. Next, a session is held to collect in-
formation from specified sources. At the end of the
information collection session through the message
broker, the extracted data is received by the service
for processing and evaluating the relevance of the
data. This service solves two main tasks:

• formation of summary data for the report;
• assessment of the relevance of the received data

according to each individual source that was used in
the current data collection session;

• saving summarized data in the database for fur-
ther processing by the data analysis service and gen-
erating reports.

The service for processing and evaluating the rele-
vance of data forms, on the basis of the received data,
a corresponding event, which is transmitted to the
service for managing actions and selecting sources.

This event is handled by the action management
and source selection service and creates the appro-
priate requests that define the management actions
for the next initiation of the corresponding micros-
ervices, which adjust the data collection scenario in
the next data collection session and determine the
data collection sources in the next step. The forma-
tion of such actions is based on the use of a linear
stochastic automaton, which is programmed at each
session in accordance with the assessment of the le-
vel of relevance of the results obtained from sources
in previous sessions of data collection [9; 10].

Next, the process of data collection by the micro-
service from the appropriate source, which is defined
by the action management service and the selection
of sources in the form of requests to sources based on
the received data, is repeated.

If the action management and source selection
service determines that the actions on the request to
receive information from the user of the large data
flow processing system must be completed, then an
event is generated as a request for a report to the data
analysis and reporting service. This event means the
end of data collection in the system, which is deter-
mined by the characteristic indicators of the user's
request for information.

The report is generated in accordance with the type
of request, which is determined by the correspon-
ding template at the stage of creating tasks. The data
analysis and reporting service forms, in accordance
with the user's request, a report based on the data
stored during information collection in the database,
which summarizes the data of all information collec-
tion sessions for each user's request for information.
The preparation of reports involves the secondary
processing of data in order to provide them in a form
convenient for use by the user.

Conclusions
The developed event-oriented architecture of the

system for processing large data flows makes it pos-
sible to collect information from various forms of
storage and composition of sources depending on the
tasks defined by the user. The composition of infor-
mation sources in this system can be expanded with-
out interfering with other system components. Each
individual microservice configured for one specific
source or several homogeneous sources of informa-
tion can provide only partial data, which is supple-
mented by other sources.

In the course of its work, the system in real time
adjusts to the user's request for information in such
a way that the data is taken mainly from those sour-
ces that meet the requirements of the request and
can satisfy them. At the same time, source selection
procedures based on a linear stochastic automaton
can be used, which generates requests to sources that
contain the maximum amount of data relevant to the
request. The described architecture of the software
system makes it possible to manage parallel data pro-
cessing with significant independence of the system
programs from the scale of the system.

The event-oriented architecture of the system for
processing large data flows is also characterized by
adaptability to the load and high throughput, which
is achieved due to the use of modern approaches in the
organization of the architecture of software systems.

An important advantage of the event-oriented ar-
chitecture in the system for processing large data
flows is also the possibility of adapting the data col-
lection scenario due to the selection of sources in
accordance with the quantitative assessment of the
relay value of information received during the ex-
ecution of user requests.

27 ЗВ’ЯЗОК, № 1, 2023

СЛОВО НАУКОВЦЯ
Проблеми розвитку та вдосконалення

єдиної національної системи зв’язку

ISSN 2412-9070

References
1. Wolff E. Microservices, Flexible Software Architecture. Boston: Addison-Wesley, 2016. 436 p.
2. Ashley D. Bootstrapping Microservices with Docker, Kubernetes, and Terraform: A project-based guide.

Shalter: Manning Publications Co., 2021. 442 p.
3. Belnar A. Building Event-Driven Microservices: Leveraging Organizational Data at Scale. USA:

O'Reilly Media, 2020. 324 p.
4. Improving the Efficiency of Typical Scenarios of Analytical Activities / O. V. Koval, V. O. Kuzminykh,

I. I. Husyeva [et al.] // CEUR Workshop Proceedings. 2021. Vol. 3241. P. 123–132.
5. Surianarayanan C., Gopinath G., Pethury R. Essentials of Mikroservices Architecture. Paradigms, Ap-

plications, and Techniques. Boca Raton: CRC Press, 2019. 314 р.
6. Kuzminykh V., Koval O., Voronko M. Standard Analytic Activity Scenarios Optimization based on

Subject Area Analysis. CEUR Workshop Proceedings. 2019. Vol. 2577. P. 37–46.
7. Rajput D. Hands-On Microservices – Monitoring and Testing. Mumbai: Packt Publishing, 2018. 160 p.
8. Hugo Filipe Oliveira Rocha. Practical Event-Driven Microservices Architecture: Building Sustainable

and Highly Scalable Event-Driven Microservices. Ermesinde: Apress, 2021. 472 p.
9. Rastrigin L. A., Ripa K. K. Automated random search theory. Riga: Zinatne, 1973. 344 p.
10. Data collection for analytical activities using adaptive micro-service architecture / V. О. Kuzminykh,

О. V. Koval, S. Y. Svistunov [et al.] // Реєстрація, зберігання і обробка даних. 2021. Т. 23. № 1. C. 67–79.

В. O. Кузьміних, С. І. Отрох, B. Xy, Р. A. Тараненко, Л. І. Кублій
ПОДІЙНО-ОРІЄНТОВАНА АРХІТЕКТУРА У СИСТЕМІ ОБРОБЛЕННЯ ВЕЛИКИХ ПОТОКІВ ДАНИХ

У статті розглянуто підходи щодо реалізації мікросервісної архітектури системи оброблення великих потоків даних під час збору
інформації на основі подійно-орієнтованого підходу. Це особливо важливо в процесі оброблення великих потоків даних із різно-
рідних за своєю продуктивністю джерел інформації, особливо, коли стоїть задача мінімізації загального часу оброблення великих
потоків даних. Пропонується підхід, який дає можливість адаптивно, відповідно до подій, що виникають під час збору інформації,
керувати вибором мікросервісів, у такий спосіб формуючи вибір джерел інформації на основі оцінювання ефективності отримання
релевантної інформації з них. Подійно-орієнтована система мікросервісної архітектури дає змогу адаптувати роботу системи до
навантажень на окремі мікросервіси та ефективність їхньої роботи завдяки аналізу відповідних подій. Використання подійно-орієн-
тованої мікросервісної архітектури може бути особливо ефективним у процесі розроблення різноманітних інформаційно-аналітичних
систем.

Ключові слова: мікросервіси; адаптація; подійно-орієнтована архітектура.

