Mpo6nemu po3BUTKY Td BAOCKOHANEHHS
€AUHOI HaLiOHANbHOT cUCTEMM 3B A3KY

C/I0BO HAYKOBIA

UDC: 004.4+004.774 DOI:10.31673/2412-9070.2023.060812
I. A. KHLYSTA, Master’s student;

0. 0. SHEVCHENKO, Portgraduate student;

0. V. SENKOYV, Candidate of Technical Sciences (Ph.D),

State University of Information and Communication Technology, Kyiv

MITIGATING PARTIAL CONTENT UPDATE ISSUES ON WEB PAGES
THROUGH SPA PARAMETER OPTIMIZATION

The experience of recent years has shown that the number of active weh applications developed according to the
fundamental principles of single-page applications continues to grow steadily despite a decrease in the numher of newly
created ones. This indicates a shift in focus from the importance of developing anew to the necessity of maintaining, ser-
vicing, and optimizing the existing end product. Furthermore, with the advancement and improvement of weh development
technologies, the potential expectations of users increase, necessitating the provision of a worthy user experience and
the enhancement of application competitiveness. A significant role in this process is played by the partial content update
process on weh pages, widely used in the development of single-page applications. Most modern JavaScript frameworks
designed for client-side weh development employ the «out-of-hox» technigque, therehy providing the developer with com-
plete discretion in deciding on approaches to its application. However, the automatic use of the web page content update
mechanism does not guarantee desired results and often leads to average or sometimes unsatisfactory values that could
have been avoided. This article provides an analysis of the characteristics of the performance parameters of a single-page
webh application, explores alternative methods to solve the stated problem, investigates potential «problematic» areas of
the client-side of applications, compares the functioning of content update mechanisms of the most popular JavaScript
frameworks Angular and React.js, and formulates recommendations for optimizing the overall application performance.
The article concludes with tables of Core Webh Vitals metrics for evaluating the effectiveness of the conducted optimiza-

opment; React.js library; Angular framework.

tion. Finally, potential vectors for further research are proposed.
Keywords: partial content update; single-page web application; web application optimization parameters; client-side web devel-

Introduction

Problem Statement. Optimization is one of the
key and most essential elements in the development
and maintenance of any software, especially when
it comes to web applications. Productivity, respon-
siveness, browser resource consumption, load, over-
all loading time, predictability, smooth rendering
— these and many other aspects are relevant to the
process of improving the functionality of a web page.
In the modern world, such applications have become
significantly more user-oriented than ever before,
making them more complex and demanding both in
terms of development and user expectations.

One aspect of this complexity and power applied
in client development is the technique of partial con-
tent update of the application page. This technique is
widely used today in almost all client-side technolo-
gies in web development and is perceived by users as
something absolutely standard and entirely expected.

However, the problem with this technique lies in
the fact that it requires conscious management and
constant adjustment. While being a powerful tool
with broad possibilities for displaying the user in-
terface qualitatively, it carries risks for the smooth
functioning of the build. Therefore, simply employ-
ing the technique does not guarantee quality func-
tionality to the user.

3B’A130K, Ne 6, 2023

If user expectations are not met, it can lead to
discomfort in usage, and ultimately, the user may
decide to stop visiting a website that does not meet
their expectations. Improving performance can sig-
nificantly impact the user experience, enriching it
and consequently contributing to increased traffic
to the electronic resource. Therefore, an effective
solution to the problem of partial content update on
aweb page is to analyze the characteristics of web ap-
plication development depending on the specific tool
and compare the performance indicators of such an
application before and after the optimization.

Analysis of Recent Research and Publications. To
achieve the set goal, a thorough review of scientific
sources related to the research topic was conducted.
The most relevant works, in our opinion, include:

e Scott E. A. Jr. from the University of Southern
Mississippi, who explores the functioning potential
of the single-page web application update mecha-
nism and provides a general analysis of the SPA con-
cept in the context of web development.

e Beglerovi¢ V., Pirija L., Prazina I., and Okano-
vi¢ V. from the University of Sarajevo discuss issues
related to detecting changes on web pages and the
importance of comparing the similarity of web pag-
es. They also examine the architecture of the system
for detecting changes on websites, detailing various

© 1. A. Khlysta, O. O. Shevchenko, O.V. Senkov, 2023
ISSN 2412-9070

Mpo6nemu po3BUTKY Td BAOCKOHAONIEHHS
€AUHOI HaLiOHANbHOI cuCcTeMM 3B’ A3Ky

{CNOBO HAYKOBUA }

types of changes that can occur on web pages and de-
scribing an algorithm for detecting changes in con-
tent and page structure. The authors provide a com-
parative analysis of various similarity parameters,
emphasizing the need for an efficient architecture to
change detection systems.

e M. Selakovic and M. Pradel from the Technical
University of Darmstadt explain the general concept
of WPO (Web Performance Optimization) and the
fundamental methods of improving web page perfor-
mance. According to their work, WPO involves opti-
mizing the performance of page components such as
HTML content, web components, page elements, and
page resources.

e Van Riet J. and Malavolta I. from the Vrije Uni-
versiteit Amsterdam analyze the impact of individu-
al parameters of the client-side of a web application
on its performance. The researchers combine seem-
ingly unrelated metrics, including programming
language, web protocol, loading speed, and web page
availability, to assess its responsiveness.

e Vesper from Harvard University describes the
Google Page Experience algorithm and its role in
measuring three crucial aspects of the user experi-
ence of a website, known as Core Web Vitals. The
work explains how to accurately evaluate page per-
formance indicators and improve them based on the
principles of Web Vitals.

The Main Part

Under the techniques of partial content update
of a web page, researchers understand a specific set
of tools to respond to changes in the view of a static
web page during user viewing and interaction. The
process of implementing tools that can consistently
support the standard functioning of the page, maxi-
mizing responsiveness to user requests through im-
proved performance, while facilitating the technical
maintenance of code and maintaining a correspon-
ding quality standard, is never-ending in its scope.

According to a study by the Institute of Physics
(IOP) in the UK conducted at the end of 2021, it is
known that the complexity and multi-layered logic
of websites and information platforms are constant-
ly increasing. This is why ordinary static websites or
their alternative dynamic solutions, especially those
based on CMS, are no longer able to meet user needs.
Time, quality, and speed of interaction with the
client now play a key role for the modern user, ap-
proaching milli- if not micro-level indicators in the
world of digital technologies [3].

This has become possible largely due to a break-
through in client-side web development through the
application of the Single Page Application (SPA) ap-
proach. SPA refers to a full-fledged client part of a
web application that has only one separate page, serv-
ing as a shell for all other components of this web ap-

ISSN 2412-9070

plication based on JavaScript, CSS, and HTML, and
consisting of separate standalone components. SPA
is built on AJAX technology, which assists in the
asynchronous transmission of data from the client
to the server without the need to completely reload
the entire page each time and is based on the prin-
ciples of the asynchronous module definition (AMD)
specification [4].

Since the majority of websites today contain a
significant amount of repetitive content, whether
it be headlines, descriptions, legal disclaimers, or
(depending on the theme) actual products, they are
mostly repeated either within a specific section or
throughout the entire application. Avoiding this
content duplication is impossible, but single-page
applications leverage this repetition to their advan-
tage through asynchrony and partial page upda-
tes.

Moreover, data transmission occurs in JSON for-
mat, which accelerates client-server communication
and is supported by many programming languages.
Once the data arrives from the server to the client,
the latter displays changes as if dynamically rewrit-
ing the page view.

However, to fully experience the benefits of the
SPA approach, it is worth analyzing in more detail
what ultimately determines its performance. In sci-
ence, performance parameters are often considered
in the context of their optimization. Together, they
collectively form the Web Performance Optimiza-
tion (WPO) Framework. The WPO Framework is
usually examined either in the context of project life
cycle stages or at different architectural levels. Con-
sidering this, the following are the life cycle stages
of the framework, including dependent parameters
(table 1) [5].

The text discusses how to track parameters in-
fluencing performance and content updates on a
webpage using a table, categorizing them into two
groups:

1) those related to general optimization;

2) those dependent on the chosen development
mechanism (framework, library, CMS), i.e., special
parameters.

Among the general parameters, HTML content,
media elements, assemblies, and configurations play
a crucial role. The frequency and format of images,
videos, and audio materials on websites indicate po-
tential inefficiencies, correlating with unsatisfac-
tory Largest Contentful Paint indicators. Statistics
reveal that most websites use static photo materi-
als in the following formats: JPEG (54,9%), PNG
(28,2%), WEBP (10,7%), GIF (2,6%), SVG (2,4%),
1C0O (0,9%), AVIF (0,3%). Video and audio materials
— WAV, MP3, MP4, WEBM, and OGG are usually
used equally in terms of accessibility and sustainable
development principles.

3B’A130K, Ne 6, 2023

Mpo6nemu po3BUTKY Td BAOCKOHANEHHS

€AUHOI HaLiOHANbHOT cUCTEMM 3B A3KY

Table 1
SPA Optimization Parameters Source”
Architecture and Design Implementation Validation Monitoring
Size and Power of Infrastructure: Software Source Code: Analysis of the Load Core Web Vitals Metrics:

e General
e Specialized

e Hardware Network

e infrastructure

e System software,

Physical processor resources or
the use of CDN and web server
characteristics

communication

For example — compression,
caching, scalability, managing
computation change processes,
state persistence, or client-server

Largest Contentful Paint,
First Input Delay, Cumulative
Layout Shift

on Physical Resources

Content Rendering in a Web
Browser:

e HTML content, images/resources,
scripts, style sheets

Management and Storage
of Static Files and Build
Minification:

e Media resources

Analysis of Google PageSpeed
Insights

Testing potential
vulnerabilities

Modeling Performance Strategy:

e Defining performance parameters
and the mechanism to influence
them

e Loading strategies

Lazy Loading

Adaptation of «No-Code» Values:

e Authentication security, e.g.

Utilization of the Dom Size
Analyzer tool

Defining desired performance
metric indicators:

e Alignment with acceptable
Core Web Vitals metrics

Application of selected
performance optimization
techniques

* Developed by the author based on sources [2; 4; 7]

Most of these formats are outdated today. Indeed,
GIF, PNG, and JPEG are the most popular formats,
but WEBP and AVIF offer more efficient compres-
sion and other advantages. It is recommended to con-
vert existing JPEG images to a less data-intensive
WEBP format to reduce data transfer volume [2].

A similar situation exists with video and audio.
For their display, it's better to simply store a lo-
cal link to them, ensuring that they are loaded only
when actively clicked.

Finally, «lazy loading» should be used for videos
and audio that require JavaScript. As for fonts, cur-
rently, almost half of all websites use the WOFF2
format, and a quarter use the WOFF format. Thus,
the use of data-efficient formats on websites is no-
ticeably widespread, indicating a high level of font
optimization. The most important thing when choos-
ing fonts is to remember that they are to be stored lo-
cally and not loaded during the application load [2].

Although the HTML page code is automatically
corrected for syntax errors and partially optimized
by browsers, this does not negate the necessity and
importance of writing clean and syntactically correct
code. Firstly, it's important to remember the brow-
ser limitations when creating the DOM structure of
the page. Generating more than 1500 objects with a
depth of 32 nodes should be avoided, as it leads to
increased loading time and an increase in the memo-
ry and energy consumption of the local browser. Se-
condly, for HTML code, every individual character is
important, so it's crucial to pay attention to nesting
levels, empty tags, indentation, and comments [6].

Optimization related to physical infrastructure is
also among the general parameters. If a developer,
for example, is not authorized to make decisions re-
garding the choice of hosting environment, they can

3B’A130K, Ne 6, 2023

10

still influence server caching features, the use of
client-server data transfer standards, data consump-
tion, and compression.

For instance, if the server supports Brotli com-
pression or the HTTP/2 standard, it facilitates the
application of effective optimization tools «out-of-
the-box» simply by activating host settings. On the
other hand, some hosts may not even provide the
option to determine the data size on a web page, let
alone support newer standards [2].

The empirical aspect of the research is more re-
lated to the special optimization parameters, which
revolve around the application's source code and
depend proportionally on the chosen development
tools. For the client-side of the web application, this
involves the React.js library and Angular frame-
work, aimed at showcasing differences in approa-
ches to solving the issue of partial content updates
on web pages.

The main point of intersection between techno-
logy and libraries is how the latter leverage it. For
this purpose, Angular has a built-in mechanism
called Change Detection, responsible for comparing
changes in the view of a page due to user interaction.
We propose rejecting the default Change Detection
in favor of Zone-Less Change Detection. At the very
least, different change detection strategies should
be applied. If the input data of a component remains
unchanged, there is no sense in rechecking them un-
less there is asynchronous logic in the component.

The OnPush change detection strategy is an opti-
mization strategy in Angular. With this strategy,
change detection is triggered only when certain con-
ditions are met, such as a change in the input pro-
perty of the component or the occurrence of an event
from that component.

ISSN 2412-9070

C/I0BO HAYKOBIA

Mpo6nemu po3BUTKY Td BAOCKOHAONIEHHS

{CNOBO HAYKOBUA }

In React, a similar mechanism exists called Vir-
tual DOM, which, however, is not controlled by the
developer and is fully protected and automated. To
facilitate the comparison of page views, we add a
key attribute when processing large data volumes,
memoize the input data of components after their
initial arrival using React.memo Higher Order Com-
ponent (HOC) and Hooks useCallback and useMemo.

The next widely used aspect of optimization is the
analysis of utilized resources. In this context, we
suggest prioritizing the application of DevTools for
profiling performance. Additionally, memory leak
prevention is crucial through the use of Observables
in conjunction with the @UntilDestroy decorator for
Angular and handling subscriptions in useEffect for
React. Mathematical calculations using nested data
structures, which should be mutated to adhere to the
principles of pure functions and not modify input
data, hold particular significance.

Regarding architecture, our recommendation is
to choose Feature-Slice and Modular approaches to
ensure scalability, clarity, and accessibility. It's es-
sential to break down the code into parts based on the
Code Splitting principle and load them in chunks/
packages as needed. The lazy loading and suspense
mechanisms are ideal for this purpose. Keeping in
mind the limitations of the DOM, carefully design
the hierarchy of components, breaking them down
into subcomponents.

Research Results. To assess how effective the ap-
plication has become, we will use Core Web Vitals
metrics. These metrics measure important aspects of
user interaction with the web page and are based on
three key indicators:

1. First Input Delay (FID): The time it takes for
the application to respond to the first user interac-
tion.

2. Largest Contentful Paint (LCP): The time it
takes for the application to render the largest ele-
ment on the page.

3. Cumulative Layout Shift (CLS): The quality of
the display layout of the web page.

In addition to these indicators, we will also con-
sider the Total Blocking Time and Speed Index. For
comparison purposes, several applications based on
React and Angular were created.

During the first iteration, an application with
100 elements containing images, videos, fonts, and
a standard architecture was developed.

According to the initial measurements, the input
data shown in the table 2.

Accordingly, the optimized indicators for the first
iteration shown in the table 3.

During the second iteration, an application with
a more complex architecture and content containing
1000 elements was developed. The input metrics ap-
peared as follows (table 4).

ISSN 2412-9070

€AUHOI HaLiOHANbHOI cuCcTeMM 3B’ A3Ky

Table 2
Initial Metrics Values for 100 Elements Source”

Metric React.js Angular
FID[ms] 220+25 240=+12
LCP[s] 3,0=0,05 3,3+0,02
CLS[ms] 0,13+0,03 0,15=0,05
TBT[ms] 0,00+0,00 0,02+0,01
SIfs] 3,0+0,05 3,3+0,02

* Developed by the author based on own tests [1-7]

Table 3
Optimized Metrics Values for 100 Elements Source”
Metric React.js Angular
FID[ms] 85+10 977
LCP[s] 1,4+0,03 1,7+0,02
CLS[ms] 0,05+0,03 0,045+0,02
TBT[ms] 0,00+0,00 0,019+0,03
SI[s] 1,4+0,03 1,7+0,02

* Developed by the author based on own tests [1-7]

Table 4

Initial Metrics Values for 1000 Elements Source”

Metric React.js Angular
FID[ms] 26016 280=10
LCP[s] 3,3+0,1 3,5+0,12
CLS[ms] 0,192+007,18 0,174=002,40
TBT[ms] 0,15=+0,00 0,20-+0,03
SI[s] 3,3+0,1 3,5+0,12

* Developed by the author based on own tests [1-7]

The optimized indicators appear as follows (tab-

le 5).
Table 5
Optimized Metrics Values for 1000 Elements Source®
Metric React.js Angular

FID[ms] 1207 130+9
LCP[s] 1,8+0,08 2,0+0,06
CLS[ms] 0,13+0,03 0,15=0,05
TBT[ms] 0,09=0,05 0,1+0,09
SI[s] 1,8+0,08 2,0+0,06

* Developed by the author based on own tests [1-7]

Conclusions

The mechanism of partial content updates on a web

11

page is a powerful tool for enhancing the user experi-
ence of the client-side of a web application. However,
to fully leverage the advantages offered by this tech-
nique and provide the user with the highest quality
experience, it is necessary to continually optimize
the project. The study examined fundamental con-
cepts related to the functioning of content updates
on a web page in a single-page web application. It also
analyzed parameters responsible for a high level of
productivity and methods to influence them with the
goal of improving Core Web Vitals metrics. Based on

3B’A130K, Ne 6, 2023

Mpo6nemu po3BUTKY Td BAOCKOHANEHHS
€AUHOI HaLiOHANbHOT cUCTEMM 3B A3KY

the results of the conducted research, it has been es-
tablished that adapting the analyzed parameters ac-
cording to the discussed methods plays a significant
role in balancing the application as a whole and is an
excellent tool for enhancing the functionality of the
content update mechanism to offer a user interface
of a higher quality.

Reference

1. Detection and Logging Changes in Web Pages
/ V. Beglerovi¢, L. Pirija, I. Prazina, V. Okanovi¢ //
21st International Symposium INFOTEH-JAHORI-
NA (INFOTEH). East Sarajevo, Bosnia and Herze-
govina. 2022. P. 1-5.

2.Beyer T. Nachhaltige Websites. Praktischer
Leitfaden zur Priifung und Optimierung — mit zahl-
reichen Tool-Tipps und Programmcodes. Springer
Fachmedien Wiesbaden GmbH, ein Teil von Springer
Nature. 2023.

3. Kornienko D. V. The Single Page Application
architecture when developing secure Web services //
J.Phys. 2021. Conf. Ser. 2091 012065.

4.Scott E. A. Jr. SPA Design and Architecture:
Understanding single-page web applications. Man-
ning Publications Co. NY, 2015. USA.

5. Selakovic M., Prade M. Performance Issues and
Optimizations in JavaScript: An Empirical Study //
IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), 2016.P.61-72.

6.Van Riet J., Malavolta I. Client-side Perfor-
mance of Web-based Applications: the State of the
Art. 2019 [Online; accessed 12.Oct. 2023]. URL:

https://jaspervanriet.nl/assets/literature_study.
pdf.

7.Vesper. Measuring time-to-interactivity for
modern web pages // Proceedings of the 15th USE-
NIX Conference on Networked Systems Design and
Implementation, NSDI. USENIX Association. [On-
line; accessed 14. Nov. 2023] 2018. URL:

https://www.cs.princeton.edu/~ravian/publica-
tions/vesper_nsdil 8.pdf

C/I0BO HAYKOBIA

I. A. Xnncra, 0. O. LLlesyenko, O. B. CeHbkos
BUPILLEHHA NPOBJIEMI YACTKOBOIO OHOBJIEHHA BMICTY BEBCTOPIHKIA
YEPE3 ONTUMI3ALI0 NAPAMETPIB SPA

[Llocsig ocTanHix pokis noka3as, Lo KifbKiCTb aKTUBHYX BEG3aCTOCYHKIB, po3pa6rieHVX BigNoBIgHO [0 3aCaAHNLLKIX NPUHLMMIB (OYHKLYI-
OHyBaHHS O[JHOCTOPIHKOBYMX 38CTOCYHKIB, MPOLOBXYE HEYXWITbHO 3pOCTATY MOMPY 3MEHLLIEHHS KiflbkoCcTi HOBOCTBOPEHUX. Lle cBigunTs npo
3MILLEHHS (DOKYCY 3 BaXX/IMBOCTI PO3POBIIEHHS 38HOBO Ha MOTPEBY B MATPUMEHHI, 006C/yroByBaHHI Ta ONTUMI3aLii BXE HasBHOMO KiHLEBOro
nponykTy. [o Toro X, i3 po3BUTKOM Ta BLOCKOHANEHHSIM TEXHO/ONiA Be6P03P06GIeHHs 3p0CTal0Th NMOTEHLiHI 04iKyBaHHS KOPUCTYBAYiB Ta
BUHVKAE noTpe6a 3abe3neyeHHs rgHoro KOpMCTYBaLbKOro JOCBIGY Ta MigBULLEHHS KOHKYPEHTOCTPOMOXHOCTI 3aCTOCYHKIB. Heabusiky posb
npy YbOMY BIOIrpae NpoLIeEC YaCTKOBOro OHOBJIEHHS BMICTY BEGCTOPIHKY, LU0 LUIMPOKO 38CTOCOBYETHLCS Mif] YAC PO3POBIEHHS O[HOCTOPIHKO-
BYX 38CTOCYHKIB.

binbLuicTs cy4acHux JavaScript hpeiiMBopKiB, Mpu3Ha4eHnx [KIiEHTCbKOI BE6P03POGKY MOCYroByOTHCS TEXHIKOKD 38 MPYHLMIOM
«out-of-box», Hanaww B Takuii crioci6 PO3POGHVKY LKOBUTY NOBHOTY NPUAHATTS pillens 1jofo nigxonis ii 3actocyBaHHs. OnHak aBTo-
MaTWYHE BUKOPYCTAHHS MEXEHI3MY OHOBJIEHHS BMICTY BEOGCTOPIHKM HE rapaHTye 6axaHux pe3ynstaris, a npu3BoguTk JILLIE [0 CEPENHbO-
CTATUCTUYHWX, @ NOJEKYN HE3EL0BINbHUX 3HAYEHB, SKUX MOXHA 610 6 YHUKHYTU.

Y cTarTi nogaHo anania ocobrvBoCTel BrvBY napaMeTpiB npogyKTVBHOCTI OQHOCTOPIHKOBOrO BE63ACTOCYHKY, PO3ITISHYTO arlbTepHa-
TVIBHIi METOAV P03B’I38HHS NOCTABIEHOI 38784, AOCIIIKEHO NOTEHUiVHI «POGIeMHi» MICLS KIiEHTCLKOI YaCTVHW 3a8CTOCYHKIB, NpoBesde-
HO MOPIBHSHHS QIYHKLIIOHYBAHHS MEXaHi3MiB OHOBIIEHHS BMICTY BEGCTOPIHKM HavibinbLL nonynspHux JavaScript gipevivsopkis Angular Ta
React.js, a Takox cghopMoBaHO pekoMeHaaLlii s onTymI3aLlii po6oTv 3aCTOCYHKY 3aranom.

Hanpukinyi HaBeneHo Ta6rmyi nokaswukis Core Web Vitals gns ouiHwoBaHHs ehekTBHOCTI npoBeneHoi onTumisauii. 3anponoHoBaHo
NOTEHUIHI BEKTOPY NMOZAITbLLUMX [OCTIIKEHD.

Kniouogi cnoBa: 4acTkoBe OHOBSEHHS BMICTY BEGCTOPIHKM; OHOCTOPIHKOBWI BEG3ACTOCYHOK; NapaMeTpu ONTIMIi3aLli Be63acTOCYHKY;
KnieHTcbka BeGpo3potka; bicnioTeka React.js; dpeimeopk Angular. N

3B’A30K, Ne 6, 2023 ISSN 2412-9070

12

