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EVALUATING RULE-BASED VS. MACHINE LEARNING
APPROACHES FOR FRAUDULENT TRANSACTION DETECTION

Financial institutions nowadays rely heavily on rule engines, such as thresholds,
white/black lists, velocity checks to flag suspicious transactions. Machine learning (ML) mo-
dels, on the other hand, while promising higher accuracy and adaptability, are being dependent
on data characteristics, class imbalance, latency constraints, and interpretability requirements.
In this paper, | present a controlled evaluation of a configurable rule-based baseline and several
supervised ML models (logistic regression, random forest, gradient boosting) on an imbalanced
transaction dataset. | measure detection performance (ROC-AUC, PR-AUC, precision/recall at
operating points), operational costs (false-positive rate, alerts per 1k transactions), and enginee-
ring trade-offs (inference latency, feature complexity, interpretability). Results show that while
rules remain competitive at high-precision, low-recall regimes, ML approaches achieve sub-
stantially better recall at comparable precision, especially when coupled with calibrated thresho-
Ids and class-imbalance handling. | discuss deployment-oriented considerations and outline
a hybrid strategy that combines rules for policy compliance with ML for generalization.

Keywords: fraud detection; financial risk; anomaly detection; rule engine; machine learning;
class imbalance; interpretability.

Introduction

Card-present and card-not-present payments, peer-to-peer(p2p) transfers, and mobile money
platforms constantly face a serious risk of fraud. Rule engines remain attractive due to simplicity and
auditability, but they struggle with evolving attack patterns and high volumes. One has to manually
change them in time, in order to catch the latest attack strategy. ML models can adapt to complex
interactions in features (amount, merchant, device, velocity signals), however they are more deman-
ding. They want labeled data, model governance, and latency budgets. Expanding on my earlier arti-
cle on computational intelligence in eCommerce fraud detection, this paper moves from a conceptual
overview toward a hands-on comparison. Previously, | highlighted the layered structure of antifraud
systems—blockilists, rules, and scoring engines—and mentioned the growing need for hybrid met-
hods that blend domain knowledge with machine learning. Here, | want to extend that discussion
by experimentally comparing a pure rule-based baseline with machine learning classifiers. I make
three contributions in this paper. First and foremost, | formalize a transparent rule-based baseline,
representative of industry practice (thresholds, velocity checks, lists). Secondly, | compare it against
standard supervised models under severe class imbalance, tracking metrics all the way. Thirdly, I pro-
vide deployment guidance, such as when to favor rules, when ML wins and how to combine them.

Related work

Fraud detection in financial systems has been extensively studied, which might pose a question
of scientific novelty. Yet no single method has emerged as universally optimal. It might be that fin-
ding such a method is impossible, and systems that combat fraud must constantly evolve and be hand-
held by their creators. However, | would like to either find alternatives or prove that theory once and
for all. Early surveys [1] provide an overview of detection techniques, from rule-based systems and
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statistical methods to machine learning and deep learning. Their respective trade-offs are noted, in
the form of cost, accuracy and implementation speed. Other authors [2] extend this approach by clas-
sifying a number of academic studies into categories by model type, such as classification, clustering,
regression, and outlier detection. Thus, highlighting the dominance of supervised models in credit
card and insurance fraud. Nevertheless, there are still areas that remain underexplored, for example
money laundering and its countermeasures. More up-to-date work makes stronger emphasis on hybrid
and ensemble approaches [3]. It demonstrates that combining unsupervised scoring models with su-
pervised classifiers can significantly improve precision, especially under concept drift. There are also
similar comparisons [4], of supervised models such as different boosting algorithms and random fore-
sts, to unsupervised ones, such as generative adversarial networks. Those show that while supervised
models win overwhelmingly in terms of Area Under the Receiver Operating Characteristic Curve
(AUROC) metric, they perform significantly worse on datasets with scarce data. There are also stu-
dies [5-7], which propose complex hybrid ensembles that incorporate both decision trees, neural net-
works and transformers, claiming they show great results in terms of detective power. However, they
seem to be prone to overfitting and due to such complex structure — severe lack of interpretability.
In this paper | am expanding on my earlier report [9], where | previously outlined the layered
antifraud architecture commonly used by payment providers. Those usually consist of some combina-
tion of block/allow lists, rule engines, and scoring models, which operate either independently or in
combination. There | emphasize the benefits of hybrid systems, where rules are being weighted dyna-
mically by machine learning models. That approach combines “the best of both worlds” — flexibility
of models, and interpretability of rule-based engine. | also stressed the importance of interpretability
to meet regulatory and ethical requirements. This paper builds on this, by empirically comparing
a rule-based scoring baseline with supervised machine learning models under severe class imbalance.

Experiments

Baseline comparison

Our first experiment would be to compare baseline rule-based approach to baseline machine lear-
ning models. For the dataset | chose Kaggle Credit Card fraud dataset [11], which satisfies our requi-
rements of being anonymized and containing high class imbalance. This dataset contains approxima-
tely 285000 transactions, of which only 492 (0.17%) are labeled as fraudulent. This is actually a good
illustration of a real fraud problem, where you are looking at a really small subset of transactions.
Each transaction here is described by 30 anonymized numerical variables (V1-V28, Time and Amo-
unt).

Firstly, we split the data into training (60%), validation (20%) and test (20%) using stratified
sampling, in order to preserve class imbalance in each subset. We then pick three models, in the form
of Logistic regression (LR), Random Forest (RF) with 400 tress and maximum depth of 12, and Gra-
dient Boosting (GB) with 300 estimators and learning rate of 0.1. For a rule-based system we cons-
truct a simple additive risk score for each transaction.

S() =Xl 1(x; < 17) 1)

Here S is a risk score, x is a value of a specific feature, t is a threshold for a respective feature

and | is an indicator function. We used two modes for a rule-based engine going forward, Precision

favored — where S >=3, and Balanced, where S >=2. We also evaluated both approaches using the
following metrics.

__tp
 Tp+fp (2)
TP
" TP+FN (3)
P*R
F1= P+R (4)
Alerts = 1000 * = lagged transaction -

Total transactions
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Here (2) is Precision, (3) is Recall and (4) is F1 score. We also used Area Under Precision Recall
Curve (AUROC). We then looked at all possible threshold for each feature, to see which would be
more suitable to stop there. At each step we calculated precision, recall and f1 score. Finally, we have
chosen the threshold with best precision-recall balance, which equals to the best F1 score. After trai-
ning the models and comparing results, we have discovered that results of machine learning models
where overwhelmingly better (fig.1).

Precision-Recall (ML curves) with Rules@budget
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Fig. 1. Model results significantly overperform rule-based approach
Overall, it seems that machine learning models have a significant lead here, however it is impor-
tant to note that training and testing of those models took up approximately 16 minutes, rule-based
approach was almost instant. With this in mind, we move to the second experiment.

Advanced ruleset
In this experiment, we would like to see if we can push the rule-based approach to be on par with
machine learning models results, while maintaining efficiency and interpretability. In order to imp-
rove from baseline, we are going to use Information Value to understand which of our features hold
the most predictive power. We are going to calculate this metric the following way.
i+
IV = 3L — ) *In(C) (6)

qite
Here, p is a proportion of fraud cases in a respective bin i, while g is a proportion of non-fraud
cases in the same bin. After calculating the metric for all features and looking at the results, we have
created a few groups via predictive power, in order to see which metrics are the most important
(table).

IV value thresholds | have chosen to use in our approach

IV value Predictive strength
<0.02 Not useful
0.02-0.1 Weak
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0.1-0.3 Medium
0.3-0.5 Strong
>0.5 Very strong

With this grouping in mind, we have selected the best features for our approach V4, V14, V12,
V17, and V10. We also combined individual rules in two ways — precision favored, which needs three
and more rules to trigger, and balanced which need two.

After testing we have discovered that this more advanced rule-based approach can perform as
decent, as baseline machine learning models (fig. 2). And once again, it is important to note, that IV
calculations have taken up approximately 2 minutes, against 16 minutes of training machine learning
models. In the face of constantly evolving fraud threat, we would have to train such models or make
and tweak such rules on almost a day-to-day basis, and this x8 difference in time would certainly be
noticed. The point here is that, while machine learning models seem superior at baseline and I am
sure would be superior in case we dedicate time to tune their hyperparameters and better arrange our
data, rule-based approach is simple, fast and still quite effective. In order for the model ensemble to
work properly and be maintained — you need a qualified specialist, while with a rule-based option and
argument could be made that with enough explanation almost anyone can make the tuning. Moreover,
rules are easily interpretable because they can be read and understood by humans, which leads to
easier implementation into the workspace and much easier maintenance.

Precision-Recall: ML vs Rules
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Fig. 2. Precision favored approach performs on par with our top models

Advanced models

In order to further push our theory, we now want to test our improved rules against something
better than just baseline models. Main concern for our models here is that fraud is too rare. Baseline
learners minimize average error and can optimize and win by predicting everything as non-fraud. As
mentioned by other authors[8], the simplest way to combat that is undersampling. We will reduce the
amount of non-fraud data, in order to better train for fraud detection. The data is going to be split
into train, validation and test as usual. Then, on train dataset only we are going to drop examples of
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a majority class until minority to majority ratio reaches the desired values, say 2. Then we are going
to fit the model on the undersampled dataset, and evaluated on the untouched datasets as usual.

Alternatively, we will try oversampling in the form of Synthetic minority oversampling techni-
que (SMOTE). What it does is takes an example of a minority class, say x, within that minority class
find its k nearest neighbors. We will look for 5. Randomly pick one of the neighbors, and generate
a synthetic sample along the line between the original example and the random neighbor.

Xnew = X + 8 * (Xpp — x) (7)

We will try to train LF and GB on undersampled datasets, and RF on SMOTE dataset. The results
were not surprising (fig. 3). While the models did outperform even our improved rule-based approach,
it took almost an hour on my hardware to compute and train all three models. Of course, an enterprise
would have a much more competent hardware at hand, however the fact of needing such a hardware
can be interpreted as a cost. Thus, we come to a conclusion — that while this was definitely an
improve-ment, it was indeed costly, five times more costly than our previous experiment. | am
interested in comparing such approaches in terms of cost in my future works.
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Fig. 3. Advanced models against advanced rules

Conclusion

Our experiments show that there is promise in rule-based approach still, and that there are pros
and cons to both methods. Machine learning models are better out of the box and probably in the long
run too, but require a significant resource investment in the form of time and skill. Moreover, they
are hard to explain to a bystander which might pose challenges during workspace implementation
and explaining result to potential clients. Additional work has to be done in order to research ethical
and legal challenges that such system might pose.

Rule-based approach on the other hand is much faster, interpretable and can be tuned to match
baseline models without much effort. However, additional research is needed to understand what mi-
ght happen if one needed to scale such a system.

I would also be quite interested in comparing different approaches in terms of a cost metric, and
that is something | will focus on in future.
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. I A I'aiina, /]. B. Macrwok
MNOPIBHAJBHUU AHAJII3 ITIAXOAIB, IO BA3YIOTI)Cﬂ HA ITPABUJIAX TA _
MAIINXHHOI'O HABYAHHA AJI51 BUSIBJIEHHS HHAXPAUCBKUX TPAH3AKIIU

DiHanCco6l YCMAHO8U Cb0200HI 3HAUHOIO MIPOIO NOKIAOAIOMbCS HA cucmemu, noOy008aHi Ha 110~
2IUHUX NPABUILAX, WO BKTIOUAIOMb NOPO2OSI 3HAUEHHS, «OLNIN/«HOPHI» CRUCKU, NePeBIPKU KilbKOCMI,
wob 3Haxooumu nioo3pini mpausaxyii. Taki Mmemoou 8UKOpUCNOBYIOMbCS WUPOKO HAcamnepeo de-
pe3 BUCOKY NOSACHIOBAHICMb, MAK AK OJisl (PIHAHCOBUX YCMAHO8 BANCIUBO MAMU MONMCIUBICIb NOKA-
3amu KiHYye8oMy KOPUCMYB8ady, YoMy came 8HYympiwHi cucmemu ma/abo cniepoOimHuKy nputiHaiu
neene piwienns. Taxoor, easxcaueum € me, wo maxi Memoou npocmo nodyoysamu i RIOMpuUMyeamu,
00 uepe3 IOCYMHICMb CKIAOHUX ANOPUMMIB 3 OONOMO2010 iX necuie Haguumu cnigpobimuuxis. Mo-
oeli MaWUHHO20 HABYAHHS, 3 IHUL020 OOKY, X04a U 00IYAIOMb U MOYHICMb [ A0ANMUBHICIb, 3ajle-
JHcamo i0 XapaKxmepucmuxk OaHux, OUCOANAHCY KIACi8, 4aco8ux pamoK ma umoe 00 iHmepnpemosa-
Hocmi. /[ no6yoosu ancamonie nodionux mooenetl HeobXioHo mamu 6a2amo Keanighiko8arHo2o o-
cbko2o pecypcy. Ilpu macuumabysanni mako2o ancamoburo Ha KOMNAKIlo, GUMpPAmu Yacy i 1H00CbKUX
pecypcie Oy0ymu 3HAUHO SUWUMU. Y Yill cmammi onucyemvcs KOHMpOIbOB8AHA OYIHKA KOH@I2yposa-
HOI cucmemu npaguil i Kilbkox mooeneti Konmponvosanozo ML (nocicmuuna peepecis, eunaoxosuii
Jiic, epadicHmuull 6ycmuHe) Ha He30ANAHCOBAHOMY HAOOPI MPaH3aKyiUHUX Oanux. Bumiproemuvcs saki-
cmb susesnenHs waxpaticmea 3a oonomozcoro mempux ROC-AUC, PR-AUC, a maxooic mounocmi
i nogHomu. Bumiproromscs onepayitini sumpamu (pieenb XUOHONOZUMUBHUX Pe3YNbMamie, KilbKicmb
cnosiwensb Ha 1 muc. mpau3akyitl) ma iHHCEeHepPHi KOMNPOMICU, HANPUKIAO, IHMePNPemosanicmo.
Pezynomamu nokasyroms, wo xoua npasuna 3anumiaiomscs KOHKYPEHMHUMU 8 DeHCUMAX BUCOKOT
mounocmi npu Huzvkit noenomi, ML-nioxoou 3abezneuyroms cymmeso Kkpauyy nogHOmy 3a nooioHoi
MOYHOCMI, 0COOIUBO Y NOEOHAHHT 3 Memodamu 0bpodku ducobarancy kiacig. OOHAK, 8KA3yEMbCA,
Wo npocmiwii aneopummu Cymmeso 8Uspaomsv 6 Yaci, 0cobiu80 Ha cepeOHbOMY 001AOHAHHI, ma
¥y eapmocmi, wo Modxce 3pooumu ix npusadauGiuUMu OJisi MEHWUUX YCIMAHO8 3 00MedHCeHUMU pecyp-
camu. O62080p1OIOMbCA ACNEKMU 3ACMOCYBAHHS MEMOo0i8 ) peaibHUXx pooouux npocmopax ma oKpe-
CMOEMbCAL 2IOpUOHA cmpamezis, AKa NOEOHYE NPABULA MA MAWUHHE HABYAHHA. 3aK1A0AEMbCSL OyH-
oameHm 01 No2IubIen020 O00CNIONCEeHHsT MAKUX NIOX00i6 came 6 pamKax Mempux «8apmocmiy
i «weuoKoCcmiy.

KurouoBi cjioBa: BusiBIeHHS maxpaiicTBa; (iHAHCOBUN PU3HK; BUSBICHHS aHOMAIi; JOT14HI
MpaBWJIa; MalllMHHE HaBYaHHS; AUCOaIaHC KJIaciB; IHTEPIIPETOBAHICTb.
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