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MATHEMATICAL MODEL OF SEISMOACQUSTIC
MONITORING OF BLAST FIELDS FOR REMOTE RECONNAISSANCE

This article discusses the construction of a mathematical model of seismoacoustic monito-
ring of explosion fields for remote exploration. As is known, seismoacoustic monitoring of blast
fields is used for remote sensing and is a set of routine observations, whereby the mode of the
observations themselves and the spectral parameters of the object under study depend on the re-
search task at hand. As shown in the article, the reliability of explosive signal classification is
improved through the use of remote sensing information technologies based on seismoacoustic
monitoring. To achieve the research goal, it is necessary to construct a mathematical model of
a continuous explosive field signal that would reflect the most important aspects of the explosive
field signal monitoring process. In the process of constructing such a model, it is necessary to
take into account both the parameters describing the process itself and the parameters of interfe-
rence and natural background noise, as well as the characteristics of the transmission function
of the medium.

To monitor explosive fields, it is necessary to collect statistical data for various explosive fi-
eld signals and transfer functions of the media in which the signal propagates. This will provide
a priori information about both the explosive field at the study points and the explosive field sig-
nals themselves, which will significantly reduce its impact on the evaluation of the studied explo-
sive field signal. The work takes into account the influence of the instability of the parameters
of the studied process and optimizes the procedure for processing the observed data according
to criteria that take into account the characteristics of natural background interference. It is
shown that the process of monitoring explosive fields boils down to the evaluation of informative
parameters of parametric mathematical models of individual and continuous signals of the exp-
losive field, the superposition of which forms the explosive field itself. The set of all informative
parameters of each signal of the explosive field forms a vector of these parameters in n-dimen-
sional Euclidean space. The optimal estimation of signal parameters involves determining the
vector of free parameters that minimizes the value of the consistency criterion between the model
and the observation data. Such a model provides good consistency in the case of modeling a li-
near system of oscillatory objects and, thus, takes into account the oscillatory nature of explosive
signals. Thus, the article presents a new mathematical model of the explosive seismic field,
which takes into account different types of signals in the explosive field, and provides a mathe-
matical apparatus for solving this model. To assess the adequacy of the model for non-separable
signals in the explosive field, simulation modeling of non-separable signals was carried out wit-
hin the framework of an improved seismoacoustic monitoring methodology based on seismo-
acoustic analysis.

Keywords: seismoacoustic monitoring; parametric mathematical model; seismoacoustic ana-
lysis; explosive fields; seismoacoustic signal; seismoacoustic signal model.

Introduction

Seismoacoustic monitoring of blast fields for remote sensing is a set of regime observations, and
the regime of the observations themselves and the spectral parameters of the object under study de-
pend on the research task. Increasing the reliability of blast signal classification is achieved through
the use of information technologies in remote sensing based on seismoacoustic monitoring. The term
"regime observations™ used above provides a clear procedure.
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First of all, it is necessary to build a mathematical model of the inseparable signal of the blast fi-
eld, which would reflect the most significant moments of the process of monitoring blast field signals.
In the process of building such a model, it is necessary to take into account both the parameters that
describe the process itself and the parameters of the interference and natural noise background, as
well as the specifics of the environment's transfer function. To monitor blast fields, it is necessary to
collect statistics for various signals of blast fields and transfer functions of the environments in which
the signal propagates. This will provide a priori ideas about both the explosive field at the study points
and the explosive field signals themselves. A priori knowledge of the random process of interference
will enable a significant reduction in its influence on estimating the explosive field signal under study.
This weakening is achieved by optimizing the processing procedures that take into account the a priori
statistics of the random interference process. The work takes into account the influence of the instabi-
lity of the research process parameters and optimizes the procedure for processing observed data
according to criteria that consider the characteristics of the natural background interference. The pro-
cess of monitoring explosive fields is reduced to estimating the informative parameters of parametric
mathematical models of separate and inseparable signals of the explosive field, the superposition of
which forms the explosive field itself. The set of all informative parameters of each explosive field
signal forms a vector of these parameters in n-dimensional Euclidean space. Each of these vectors
uniquely characterizes the signal, the parameters of the mathematical model of which are this vector.
Thus, the classification of resolved and inseparable signal explosion fields is reduced to the classifica-
tion of these vectors in n-dimensional Euclidean space.

Review of recent research and publications.Today, issues related to seismic acoustic monito-
ring and the impact of shock waves on objects are described in the works of domestic and foreign re-
searchers, namely: Mostovoy V.S., Vyzhva S.A., Shcherbina S.V., Kendzera O.V., Gabriel Albert
(a French scientist who studied shock waves and worked on their mathematical description), Gaizim
Walzman (Garry J. Walzmann - American physicist specializing in shock physics and explosive phe-
nomena), John Solomon (John Solomon - scientist working in the field of shock wave physics and
materials mechanics), Kevin Truscott (Kevin M. Truscott - engineer and scientist who studies the
interaction of shock waves with structures), Leonardo Bassani (Leonardo Bassani - Italian scientist
who studied the physics of explosions and shock waves), James R. Melville (James R. Melville —
a physicist specializing in the study of shock phenomena and materials mechanics).

The purpose of this article is to construct a mathematical model of an indistinguishable explo-
sive field signal that would reflect the most important aspects of the explosive field signal monitoring
process. In the process of constructing such a model, it is necessary to take into account both the para-
meters describing the process itself and the parameters of interference and natural background noise,
as well as the characteristics of the transmission function of the medium.

Main part

Mathematical model of indivisible signals. The model of the separate signal of the explosive
field is a superposition of solutions to a second-order differential equation, which describes the su-
perposition of oscillators that enter at different times, each with its own amplitude and natural
frequency. The model of the explosive field we will present is the model of separate signals in the
following way:

I

M(t,A) = Dt — Aorai) /11+4i[e_/12+4i(t_l°+4i) sin[Az.44;(t — Ao+4i)]]F = {Ap+aili=orp=02- (1)
=0

L

nere A — vector of free model parameters;

| — number of pilmoles that are in superposition;
P — corresponding submodel number;

@(t)— Heaviside function;
I — submodel serial number;
| o, —signal arrival time;
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I, —signal amplitude;
| ,.,;— signal attenuation coefficient;
| .., —signal frequency.

The optimal estimation of signal parameters involves determining the vector of free parameters
that minimizes the value of the criterion of agreement between the model and the observation data.
Such a model gives good agreement in the case of modeling a linear system of oscillating objects and
thus takes into account the oscillatory nature of explosive signals.

As a criterion of agreement, we choose the value of the norm L, (the integral of the square of
the deviation of the model from the observed data y(t) yor L, (the integral of the modulus of the de-
viation of the model from the observed data Y(t) ). In the first case, the criterion F (1) takes the form

FM)=[[y(®)-M@En] dt.
In aLther cese: F ()= Hy(t)— M (t,)|dt
T

The optimal estimate of free parameters A" is the point in the parameter space that minimizes
F(2):

F(2")=minF (1), )

AeA
y(t) - analytical approximation vector of a function of observed data values;

A - the set of all possible values of a vector A.

1. These parameters enter the model nonlinearly. As a result, criterion (2) is a surface with many
local extrema. This type of criterion has determined the approach to finding the global minimum. The
points in the vicinity of which local extrema are located are selected by the random search method
(Monte Carlo) according to a priori distributions [2]. Therefore, the number of calculation cycles
must be sufficiently large to ensure the correctness of the result, which becomes increasingly complex
with a large model dimensionality. Or it would be best to have good a priori ideas about the expected
result. In conclusion, I would like to present the best parameters for the object under study.

oF (1)

To find the local minimum of the criterion, we need to calculate the time derivatives a—,

k =0,K, and, equating them to zero, create a system of equations that has the form:
A oM (t,h
). [[y()-mg, x)]—)
J

Cucrema IIPUBOAUTHCA:

I[y D(M(t,2)) ]dt—I[M(t LD(M(t,3))]dt,

dt=0, k=0,K

here D(M (t,)»)) — a vector composed of functions, each of which is a derivative of the model with

respect to all corresponding components of the vector 4.
For model (1), this vector has the form:

D(M(t,x))={w}; p=03;i=0,I. 3)

p+i

The relevance of the variational approach in solving geophysical problems can be traced, for
example, in [3].
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The search for the minimum of criterion (2) is carried out using the Levenberg-Marquardt algori-
thm [4,5], for a priori randomly selected points in the space of free parameters of model (1).

Model (1) can be generalized to the case of a flow of inseparable signals, i.e., when the signal
carriers intersect. Then the model of a flow of inseparable signals takes the form:

-
M(t,2) = 501 Thoo (6 = Aosis)Arsisle 20 00)sin At = Ao1is)]] 4)
here S - the number of signals that overlap in the group;

A — matrix of free model parameters;

| — number of pilmoles that are in superposition;
P — corresponding submodel number;

@(t)— Heaviside function;
I — submodel serial number.
| o, 45 — Start time of the S - th signal;

| ..., —amplitude of the S - th signal;
| ,, 4 s— attenuation coefficient of the S - th signal;
| ;.. — frequency of the S - th signal.

That is, the model (4) consists of S separate discrete signals. In the general case, S is arandom
variable. In the matrix of free parameters of the model L= {l .} k= 0,K;s=1S;K = 4l;, the

column with the number S is the vector of parameters of the S-th signal.
In this parameter vector mod (k,4) - is the number of the Ao, A1, A2, A3 parameters. This harmonic

has the number ant(k,4). We adopt the following notation: mod (k,4) - is the remainder of the nu-

mber divided k by 4, and ant(k,4) - is the integer part of the division k by 4.
The above example of model (1) can be considered a special case of the more general model (4),
in the case when | o+i.s does not depend on i .

The optimal estimate of the matrix of free parameters of the model (4) A is determined by the
values of the free parameters that give the minimum value of criterion (2) on the set of local minima
of this criterion. The procedure for obtaining the optimal estimate consists in determining the points
of local extrema closest to each of them for the set of M matrices A, and then selecting the global
one on the set of local minima.

The point that gives this minimum criterion in the (K +1)-S dimensional space is chosen as
optimal for the free parameters of the model signal. In such a procedure, convergence to the optimal
solution is ensured by probability with increasing number M . In this case, we can assume that we
have obtained as a result of the solution a superposition of separate signals M (1) that began at diffe-
rent times.

Assessment of the adequacy of the model of inseparable signals of the blast field. To assess
the adequacy of model (4), we will conduct a simulation of the explosion field by implementing
a stochastic process at each observation point. The simulation was conducted in the Mathcad 6.0 soft-
ware environment.

To solve this problem, it is necessary to simulate both the microseismic background that accom-
panies the observation and the superposition of signals that are inseparable from each other, which
simulate the explosion field signals. The explosion field signals and interference signals are simulated
by Berlage signals, because the physically feasible signal is well approximated by Berlage pulses [6]:

y(t) = n(t)te~*tsin(at). (5)

To take into account the leading edge of the explosive field signal, the Berlage pulse generaliza-
tion can be represented in the following form:
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y(t)=An(t—7)(t—7)" exp {—a(t - r)}sin [a)(t - r)] (6)

here n(t—7) — is the Heaviside function, for the Berlage impulse, which entered at time 7 ;

y(t)— observed data;
{A,r,a,a),ﬂ} vector of free model parameters;

A - amplitude of oscillations;

7 - start time of the signal;

« - attenuation coefficient of the signal;

@ - frequensy of the signal;

3 - parameter that characterizes the signal front.

T -5 0 5 10

Fig. 1. Fragment of simulation modeling of the microseismic
background. The abscissa axis represents time in seconds, while
the ordinate axis indicates the amplitude of the vibration

According to the conducted rese-
arch, the microseismic background is
simulated in the form of a superpo-
sition of 30 generalized Berlage pu-
Ises (6) with amplitudes not exceeding
0.4 relative units (fig. 1) [7, 8] .

To assess the adequacy of model
(4), we will construct three inseparable
signals that simulate the signals of the
blast field by generalized Berlage

acceleration in relative units

) A

0 2 4

[

b2

Fig. 2. Simulation of the 1st signal of the
explosion field by a Berlage pulse with an amplitude
of 0.8 relative units. The abscissa axis represents
time in seconds, and the ordinate axis represents the
amplitude of the acceleration of oscillations in
relative units

]

-
-2

Fig. 3. Simulation of the 2nd signal of the explosive
field by a Berlage pulse with an amplitude of 1.2
relative units. The abscissa axis represents time in
seconds, and the ordinate axis represents the
amplitude of the acceleration of oscillations in

relative units
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pulses (6) with amplitudes of 0.8, 1.2,
and 1.5 in relative units (fig. 2-6).
Three inseparable signals were selected for visua-
lization purposes.

Fig. 2 presents the result of the simulation of
the 1st signal of the explosive field by a Berlage
pulse with an amplitude of 0.8 relative units,
a frequency of 0.6 Hz, and a decrement of 0.28.
The abscissa axis represents time in seconds, and
the ordinate axis represents the amplitude of the
acceleration of oscillations in relative units.

In fig. 3, the result of simulation modeling of
the 2nd signal of the explosive field by the Ber-
lage pulse with an amplitude of 1.2 relative units,
a frequency of 0.8 Hz, and a decrement of 0.36 is
presented. The abscissa axis represents time in
seconds, and the ordinate axis represents the
amplitude of the acceleration of oscillations in re-
lative units.

Fig. 4 presents the result of the simulated 3rd
signal of the explosive field by the Berlage pulse
with an amplitude of 1.5 relative units, a freque-
ncy of 0.7 Hz, and a decrement of 0.25. The abs-
cissa axis represents time in seconds, and the
ordinate axis represents the amplitude of the
acceleration of oscillations in relative units.
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Figure 5 presents the results of simulation 3
modeling of three inseparable signals from the
explosive field, simulated using Berlage pulses
with amplitudes of 1.5 (black curve), 0.8 (red
curve), and 1.2 (green curve) relative units.
The abscissa axis represents time in seconds, !

=

and the ordinate axis represents the amplitude

of the acceleration of oscillations in relative
units.

For simulating inseparable explosive
signals against a microseismic background,
modeling is performed as a superposition of
three inseparable signals from the explosive
field (fig. 5) and the microseismic backgro-
und (fig. 1). Fig. 6 presents the results of si-
mulation modeling of three inseparable sig-
nals from the explosive field against a micro-
seismic background using Berlage pulses.
The amplitudes of the Berlage pulses that si-
mulate the signals of the explosive field are
0.8, 1.2, and 1.5 relative units, and the ampli-
tudes of the Berlage pulses that simulate the
microseismic background do not exceed 0.4
relative units.

i o]

Fig. 4. The result of simulation modeling of the 3rd
signal of the explosive field xy by the Berlage pulse with
an amplitude of 1.5 relative units. The abscissa axis
represents time in seconds, and the ordinate axis
represents the amplitude of the acceleration of
oscillations in relative units

—!

v

[

-

— Eig. 5. Resultgiof simulation modeling of thiee
inseparable signals of the explosive field simulated by
Berlage pulses with amplitudes of 1.5 (black curve), 0.8
(red curve), and 1.2 (green curve) relative units. The
abscissa axis represents time in seconds, and the ordinate

axis represents the amplitude of the acceleration of
oscillations in relative units
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Fig. 6. Simulation modeling of the superposition of three inseparable signals of the explosion field against

the background of a microseismic background. The abscissa axis represents time in seconds, and the ordinate
axis represents the amplitude of the acceleration of oscillations in relative units

The result of solving model (6) for three simulated signals of the explosion field by Berlage
pulses with amplitudes of 0.8, 1.2, and 1.5 relative units, against the background of a microseis-
mic background simulated as a superposition of 30 Berlage pulses with amplitudes not excee-
ding 0.4 relative units, is presented in fig. 7. To obtain the parameters of the recorded explosion
signals in the data shown in Figure 6, model (4) is employed. To solve model (4), which is
a superposition of separate signals (1), model (1) is solved for each separate signal, while all
other signals are considered as noise. In this example, model (1) was solved for each of the
three se-parate signals of the explosive field, which are additively included in the inseparable
signal, as shown in Figure 6. The result of the first signal is a signal with an amplitude of 0.79,
a frequency of 0.63 Hz, and a decrement of 0.28. The result of the second signal is a signal with
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an amplitude of 1.22, a frequency
2 of 0.82 Hz, and a decrement of
0.33. The result of the third signal
is a signal with an amplitude of
1.57, a frequency of 0.72 Hz, and
a decrement of 0.23.
To solve the model (4), which
IS a superposition of separate sig-
nals, each separate signal of the
explosive field (1) is considered
separately, while all others are
- 10 - 0 : 10 considered as noise.
Fig. 7. Result of simulation of model (3.19) (signals of the Thus, the following conclu-

explosion field with Berlage pulses with amplitudes of 1.22 (green sion can be made: the adequacy of

curve), 0.79 (black curve), 1.57 (purple curve) relative units .
against the background of the microseismic background). The the model (4) for the simulated

abscissa axis represents time in seconds, and the ordinate axis non-separable signal does not
represents the amplitude of the acceleration of oscillations in exceed 5%.
relative units

~

Conclusions

A new mathematical model of the explosive seismic field is presented, which accounts for vari-
ous types of signals in the explosive field. A new mathematical model of non-separable signals of the
explosive field is presented. A mathematical apparatus for solving this model is provided. It is worth
noting that these algorithms were developed for automated seismic acoustic monitoring systems [9].

To assess the adequacy of the model for non-separable signals in the explosive field, simulation
modeling of non-separable signals was carried out within the framework of an improved methodology
for seismoacoustic monitoring, based on seismoacoustic analysis.
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L O. Apmonai
MATEMATHYHA MOJEJIb CEHCMOAKYCTHYHOI'O
MOHITOPHUHI'Y IOJIIB BUBYXY JJIA JUCTAHIOINHOI PO3BIIKH

YV oaniii cmammi pozensioacmoca nooyoosa mamemamuyHoi Mooeni ceucmMoaxycmuyHo20 MOHi-
MOopUuH2y noi6 8UOYXY 01 OUCMAHYIUHOT po38IOKU. K 8i00M0, CeUCMOAKYCMUYHUL MOHIMOPUHE 8U-
0YX08UX NOJI6 BUKOPUCMOBYEMBCA OJ151 OUCAHYIUHO20 30HOYB8AHHSA | € CYKYNHICIIO PENCUMHUX CNOC-
mepesiceHb, NPUUOMY DEeHCUM CAMUX CROCMEPEdtCeHb | CNeKMPAanbHi napamempu 00Cai0*CY8aAHO20
00'exma 3anexcamsv 8i0 NOCMABIEHO20 OOCIIOHUYLKO20 3a80anHs. 1liosuwenns nadiinocmi kiacu-
Qikayii 6uGYX08UX CUSHANIB, AK NOKA3AHO 6 CMammi, 00CAAEMbCA 3a PAXYHOK BUKOPUCHAHMS
iHopMayiiHUX MEeXHON02I OUCMAHYIUHO20 30HOYBAHHS HA OCHOBI CEUCMOAKYCMUYHO20 MOHIMOPU-
Hey. [{na 0ocsenenns memu 00CniodcenHs HeoOXIOHO nobyOysamu Mamemamuyty Mooeib Hepo3pis-
HEeHO020 CUSHATLY 8UOYX0B8020 NOJIA, AKA O 81000PANCANA HAUBANCTUBIUL MOMEHNU NPOYECY MOHIMOPU-
H2Y CUSHAI6 6uOYX06020 nois. Y npoyeci no6yoosu maxoi mooeni HeobXioHo 8paxo8ysamu K napa-
Mempu, WO ONUCYIOMb CaM npoyec, max i napamempu nepewKoo i NpupooHo2o hoHO08020 ULYMY,
a makooic ocobausoCcmi nepedasanvboi Qyukyii cepedosuya.

st monimopumney 8ubyxos8ux noie HeoOXioHo 3iopamu cmamucmuyHi Oaui OJist PI3HUX CUCHATLIB
8UOYX08UX NONIG T NepedasarbHux QYHKYIl cepedosuy, 8 AKUX nowupoemscs cuenai. Lle dacmo
anpiopHti ysaeieHHs K npo 8UOyxXose noje y moukax 00CIiONCeHHsA, MakK i npo cami CueHaiu 6udyxo-
8020 NOS, WO 00360IUMb 3HAYHO 3MEHUUMU 1020 8NIUG HA OYIHKY OOCHIONHCYBAHO20 CUSHANLY 8UOY-
X06020 nojs. Y pobomi 8paxo8yemuvcs nau8 HecmadiibHOCMI napamempie 00CHiHCY8AHO20 NPO-
yecy ma onmumizyEmMvcs npoyedypa oopooKu CHOCMEPeNHCYBaAHUX OAHUX 3a KPUMEPIAMU, WO 8PAX0-
8Y10OMb XAPAKMEPUCMUKU NPUPOOHUX oHosUX nepeuikod. Tlokasano, wo npoyec MOHIMOPUHRY BU-
OYX08UX NOJI6 3600UMbCA 00 OYIHKU IHPOPMAMUSHUX NAPAMEMPIE NAPAMEMPUUHUX MAMEMAMUYHUX
MoOenel OKpemMux i HepO3pUBHUX CUSHATIE 8UOYX0B020 NO.JIA, CYNEPNO3UYIA AKUX YMBOPIOE came Uy~
xose none. CyKynHicmov ycix iH@OpMaAMUSHUX NApamempis KOMCHO20 CUSHALY 6UOYX08020 N0
VMBOPIOE BEKMOP YUX NAPAMEMPIB Y N-8UMIDHOMY eB8KII0080M) NPOCMOPI.

Onmumansha oyiHKa napamempis cueHary nepeobayac 6U3HA4EeHHs 6eKMopa GLILHUX napamem-
Pi6, Wo MIHIMI3YE 3HAUEHHS KPUMEPTIO Y3200HCEHOCMI MIJHC MOOELII0 MA OAHUMU CROCTNEPEHCEHHSL.
Taka moodens 3a0e3neuye Xopouty y32004CeHicmb )y UNAOKY MOOENI08AHHS IHINIHOI cucmemu KoIusa-
JILHUX 00'€KMi6 i, MaKum 4YUHOM, 8PAX08YE KOAUBANbHUL Xapakmep ubyxoeux cucHanig. Takum uu-
HOM, y cmammi npeocmasieHo H08Y MAMeMamuyry Mooeib 6UOYX08020 CEUCMIUHO20 NOA, AKA 8pa-
X08Y€ Pi3HI MUNU CUSHANIB Y 8UOYX0B80OMY NOJl, HABEOEHO MaAmMeMamudHull anapam OJisi 036 sI3aHHs.
yiei moodeni. /[ns oyinku adekeamnocmi Mooeui 0Jisi Hepo30LIbHUX CUSHALIB Y 8UOYX08OMY NOL 0Y110
nposedeHo imimayitine MOOeI0BAHHS HePO3OIIbHUX CUSHANIB Y PAMKAX 800CKOHAEHOI MeMO00N02ii
CeucMoaKycmudHo20 MOHIMOPUH2Y, 3ACHOBAHOI HA CEUCMOAKYCMUYHOMY AHAI3I.

Kurouosi ci1oBa: celicM0oakyCTUYHHI MOHITOPHHT; TapaMeTpUYHA MaTeMaTUYHa MO/IeNb; Ceiic-
MOAKyCTUYHHMM aHaji3; BUOYyXOBI MOJIS; CEHCMOAKyCTUYHHMI CHUTHAJI; CEHCMOAKyCTHYHA CUTHAJIbHA
MOJIEIb.
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