Розроблення алгоритмів машинного навчання для рекомендаційної системи вибору музичних композицій
DOI: 10.31673/2412-9070.2020.066465
Анотація
Проаналізовано метод сингулярного розкладання матриці (SVD) як ефективний спосіб побудови рекомендаційної системи. Розвиток інформаційних технологій та їх упровадження в суспільне життя зумовлює потребу пошуку акцентованої інформації за умов невизначеності. Для розв’язання таких завдань останнім часом створюються інтелектуальні рекомендаційні системи. Популярність рекомендаційних систем зростає в кожному сегменті товарів і послуг, зокрема музичних. Із соціально-економічного погляду такі системи є основним інструментом поширення нових композицій у сфері музики, сприяє просуванню цих композиції відповідно до вподобань цільової аудиторії і стимулює користувачів набувати нових музичних треків. Окрім цього такі системи значно скорочують час і полегшують пошук відповідних музичних композицій за умов невизначеності.
Ключові слова: матриця; машинне навчання; рекомендаційна система.
Список використаної літератури
1. Melville P., Sindhwani V. Recommender Systems // Encyclopedia of Machine Learning / Claude Sammut and Geoffrey Webb (Eds). Springer, 2010. 9 с.
2. Королева Д. Е., Филиппов М. В. Анализ алгоритмов обучения коллаборативных рекомендательных систем // Наука и инновации: електрон. версія журн. 2013. Вип. 6. URL: http://engjournal.ru/catalog/it/hidden/816.html
3. Hartshorn S. Machine Learning With Boosting: A Beginner's Guide. Springer, 2017. 227 с.